Estimates of Fractional Integral Operators on Variable Exponent Lebesgue Spaces
نویسندگان
چکیده
منابع مشابه
Littlewood-Paley Operators on Morrey Spaces with Variable Exponent
By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g μ *-functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable exponent.
متن کاملCommutators of integral operators with variable kernels on Hardy spaces
Abstract. Let TΩ,α (0 ≤ α < n) be the singular and fractional integrals with variable kernel Ω(x,z), and [b,TΩ,α ] be the commutator generated by TΩ,α and a Lipschitz function b. In this paper, the authors study the boundedness of [b,TΩ,α ] on the Hardy spaces, under some assumptions such as the Lr-Dini condition. Similar results and the weak type estimates at the end-point cases are also given...
متن کاملGeneralized Fractional Integral Operators on Vanishing Generalized Local Morrey Spaces
In this paper, we prove the Spanne-Guliyev type boundedness of the generalized fractional integral operator Iρ from the vanishing generalized local Morrey spaces V LM {x0} p,φ1 to V LM {x0} q,φ2 , 1 < p < q < ∞, and from the space V LM {x0} 1,φ1 to the weak space VWLM {x0} q,φ2 , 1 < q < ∞. We also prove the Adams-Guliyev type boundedness of the operator Iρ from the vanishing generalized Morrey...
متن کاملOn Variable Exponent Amalgam Spaces
We derive some of the basic properties of weighted variable exponent Lebesgue spaces L p(.) w (R) and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces W (L p(.) w , L q υ) is defined, where the local component is a weighted variable exponent Lebesgue space L p(.) w (R) and the global component is a weighted Lebesgue space Lυ (R) . We inves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2016
ISSN: 2314-8896,2314-8888
DOI: 10.1155/2016/2438157